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K, = hf(t..,yn)
| Ki=K | = h | f(tn, y) =Sty ;) | <AL | yu=yy |
Ky = hf(tatcah, yntazK))
| Kz— K | = B | fltatcal, yat @K = f(tatcalty yy+a21K7) |
< hL| y,.+a2,K1>—y;-—ale|' |
< hL(1+hLay) | yu—y, |
K3 = lrf(t,.+c;h, yn+a31K.+a31K2)
| Ks—K; | < 4L | yutas Ki+ass Ky~ yo—aynK; —ank; |
< hL(1+ayhL+ayhL(1+hLag)) | ya=y, |
when we use (2.27), the increment function satisfies
| ¢(tn, Y, I)—P(tns Y3 1) | ‘_
= It | wiKy FwaKot waKs—w K] —waK; —wiK; |
< 70wy | Ky =K} | 4wz | Ka—K3l4-ws | Ks— K3 D)
& I wihL | yu—y, | +woh L(1+hLaz) | yu—y3)
+wahL(1+ashL+-ashL(1+hLay)) | yu=y, | ]
€ L{(w, +wotwy) (a2 +walas +as) hL
+wyazias (ALY} | ya—yy |
The use of Equation (2.24) yields

| Bty 1 D=t ) 1 < L (14 hLet LR ) a0 |

Therefore the increment function ¢ satisfies a Lipschitz condition in y and
it is also continuous in /. Thus, we conclude that the third order Runge-
Kutta method is convergent.

The Runge-Kutta methods are widely used for solving initial valuc prob-
lems. Tuese methods providc approximations which converge to the true
solution as / -~ 0 and also have the advantage of sclf starting. The disad-
vantages of the Runge-Kutta methods are that they involve considerably
more computation per step.

2.3.7 Approximation of truncation error . ;

In the numerical solution of differential equations, it is desirable to have
estimates of the local discretization (or truncation) errors of the solutions
at each step. The estimate may be used not only to provide some idea of the
errors, but also to indicate when to adjust the step size. If the magnitude of
the estimate is greater than the preassigned upper bound, the step size is
reduced to achieve smaller local errors. If the magnitude of the estimate is
Jess than the preassigned lower bound, the step size is increased to save the
computing time. For our discussion the rounding error will be ignored. A
scheme for estimating the discretization error is called extrapolation or,
sometimes Richardson’s extrapolation. It is useful for calculation of the total
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(not local) truncation error for any method. If the function f(¢, y) 1s suffi-
ciently differentiable and if p is the order of the numerical method, then
from Theorem 2.3 we have . i

€x = h#3(t,)+0(hP+!) (2.28)

where 8(r) is called the magnified error function and €, = y,— y(t,). Suppose
we calculate y(f) using a certain # and get y{h). Then we repeat the calcula-
tion using h/2, and obtain y,(4/2). It follows from (2.28) that

u(R)—=y(tx) = h?8(1,)+0(hP+!)

ya (5 ) =2t = (2 ) 300+ (229)
Hence o) =y (%) - (1— 5 )hPS(t.)+0(hP+') (2.30)

From the equations in (2.28) and (2.30) we obtain the equation
27 h\]
= gy = () [ o)

Thus, we obtain the Richardson extrapolation to the true solution at the
mesh point t,

2 y..(—’z')— alh) |
o) = ——2L T ooy

The right sides of the relations of the following

€& = 272;_"—1(y,.(h)—y,.(—g—)) (2.31)
/
¥ (t) = 2,},"(_22'_2 _ly" ® ’ (2.32)

help, respectively, to determine the estimate of the accumulated truncation
crror and the true solution at f, with an error whose order exceeds the
order of the singlestep method by one.

We denote the predicted accumulated error by P, and the actual error in
the extrapolated solution by T, where

Py = i,,z_Ll(y.(h)—y.. (—g—))

223, )=t
and - Tn = - 2’_1 —J’(ln)

We have estimated the truncation error at =S5 for the differential equation

y _ 2 =1
dt—-'y’ }’(0) 1
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when solved by the various order. Runge-Kum methods with step sizes
h=2"™m=4(1)8,

- Using the following methods:

(a) the second order Euler-Cauchy method, p =.2,

(b) the.nearly optimal third order method, p = 3,

(c) the classical fourth ordel‘ method,p = 4,
we have tabulated the error <, the predicted error Ps, the extrapolated error
T. and the magnified error functlon (t,) in Table 2.3.

TABLE 2.3 E‘.mmulou OF THE TRUNCATION Euon INY = —)8
H0) = 1, Aﬂ -5

o Seeond order Euler-Cauchy method

k . B T. -8t
2~ 468629-10 47138210 —275291-12 11996907
24 115093—10 11543710 —344374-13 11788507
2 28514911 28557911 - —430039—14 11679707
2 70964712 7018412 . —SITII~1S - 116269—07
2 177009-12 . 177076-12 - —671063—16 - 116005—07
Nearly op'ti‘;p_‘al'_thir_d order method
‘ (n B . . R‘ ; N Tu : B(h)
—UTIS—11 - 11832411 57087714 —482317-08
2- —14219-12 . —142547—-12 34835815 —465957—08
2~ —174700—13 —174916-13 215137—16- —457967—~08
2 —216493- 14 21662714 13365017 ~454019—08
—26941-15 —269530—15

. 83277519 . —452057-08

Classical fourth order method .

h - € R I » T. : : '(‘.)

2 581973 —14 5817¢*~14 26974417 38140209
- 366262—15 36358815 674144—18 38405309
2= 235234—16 228794—16 644000—18 | 39465709
ol 20739617 14304217 64354018 55612509
2 73294118 64353218 314796 —08

89408619

From the numerical results we can draw the following conclusions:

(a) The predicted error P, gives good estimate for the error value «,.

(b) The extrapolated error T« is smaller than the corresponding predicted
error P, and compares favourably with the predncted error P, of one
o1 der higher method.

(c) The value of the magnified error function 3(s) tends to a comstant
value as h decreeses
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For hy = hob' with 0 < b < 1, (2.38) becomes
Ya - b YL,

YW= T (2.39)
Equation (2.39) for b = 1/2 simplifies to
(k41 _ p(®)
yw= Yot Tan g (2.40)
(*+) — Y _ .
and yo = £ e =2 (2.41)

From Equation (2.38), we notice that each Y{¥ is a linear combination of
y(t, hy), i =k, k+1, ..., k-+m, which can be written in the form

n
Y® = B Cmy m—y YEHD (2.42)

where c¢,., m) are constant coefficients.
Substituting (2.42) into (2.38) we get the recursion relation in the coeffi-
cients as

— hE Cmts m-) = h;ﬁu Cinaty m—1—)
Cmym—j = hi—hzﬂn (243)

Cmats m = Cmts -1 = 0

Using (2.43) and (2.42) we may write

Coo
[ rQ [ yo
Y© ‘o cro Yy
: ! (5] €21 €20 | :o .
(0) : (m)
L Ym ‘_ Com cm | LYo

We know that the numerical methods of interest converge as the step
size tends to zero, i.c. ‘

lim y(@, ) = YQ =y (2.44)

The convergence of Y to y (f) can be seen from Equation (2.37). Whenever
T, # 0, m = 1, 2, ..., this equation states that each column of the Y-scheme
converges to y (¢) faster than the preceding one; and, in fact, the principal
diagonal converges faster than any column.

We illustrate the extrapolation method.as applied to Euler’s method.

2.4.1 Euler extrapolation method
The approximate value y. (h) is obtained from the algorithm

Yoer = Yathf(ta, ya),n=0,1,2, ...
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Since p = 1 for Euler’s method, from (2.28) the approximate value y, (h) to
y (1») has the asymptotic expansion of the form

y (tn, ) = y (ta)+7) (ta) h+73 (1) [
We use step lengths ho, ho/2, ho/22, ..., ho/2* and generate Y®). In Euler’s
method, we know y, at t, and advance the computation from 7, to ty4, to
find yny1. We take t,4y—1, = ho and start the procedure by computing
Yn+y With step length ko and denote it by Y@, i.c.

YO = ya-t-ho fa

Next, we put hy = ho/2 and apply Euler’s method twice to obtam Y (tayy, Ity)
at tniny

e

Y(o” = y("H'l‘ hl)

for hy = hy/22, we apply Euler’s method four times. Similarly, for hx = ho/2*,
we apply Euler’s method 2* times to obtain Y® The above procedure gcts
simplified if we consider the initial value problcm

» Y =2,y =y .
and we obtain

YO = (14+Mg) yn .
}"g)=(1+”’°)

' 2
rp=(2+5) »

The convergence of Y® to the exact value for &, = 1 and A = 1 is shown
in Figure 2.2,

2.5 | Exact solution :Y,,(l)

Yoll)

2.0} Y (0)
1.8}

,.o d 4 i n _ )

0 /13 12 /4 1.0 ¢t

Fi8- 2.2 Solution of y’=y, {(0)=1 by Euler extrapolation method
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After determining the first column Y of the Y-scheme, we obtain the other
columns with the help of relation (2.40)

yUt_ y®
Y,‘:,= 2'"—2—# N m=1, 2, 3, .o
The value of m is-chosen by comparing the two successive values ' Yo,
and Y and we increase m till this difference is within the prescnbed
tolerance e. .
When the convergence is obtained, Y is used as y,..,.. and the procedure
is repeated to obtain y, 2.

2.5 STABILITY ANALYSIS

While numerically solving an initial value problem for ordinary differential
equations, an error is introduced at each integration step due to the inacc-
uvracy of the formula. The magnitude of this so called local truncation error
is a measure of the accuracy of the integration formula. The magnitude of
the total error depends on the magnitude of the local truncation errors and
their propagation. Even when the local error at each step is small, the total
error may become large due to accumulation and amplification of these
local errors. This growth phenomenon is called numerical instability: To
understand this, consider the simple linear first order differential equauon

-y =2y, y(to) = yo (2.4%)

where A is a constant. It can be seen that, to a fipt order approximation, the
results obtained from a stability analysis on the above linear equatlon can
be extended to a nonlinear case :

y'=f(t, y), y (t)=y, ‘ (2.46)

where df/dy from Equation (2.46) plays. role slmllar to that of the constant
A in Equation (2.45).

The nonlinear function f(#, y) can be inearized by expansion of the
function about the point (t,, y») in'the Taylor series truncated after first order
. terms. The resulting linearized form for Equation (2.46) is g:ven by

y'=My+Br+C (2.47)
whers (%),

=), )
e={n(F) (%]



